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Abstract: When introducing log management or Security Information and Event Management (SIEM) practices, 
organizations are frequently challenged by Gartner’s 3 Vs of Big Data: There is a large volume of data 
which is generated at a rapid velocity. These first two Vs can be effectively handled by current scale-out 
architectures. The third V is that of variety which affects log management efforts by the lack of a common 
mandatory format for log files. Essentially every component can log its events differently. The way it is 
logged can change with every software update. This paper describes the Log Analysis Machine Learner 
(LAMaLearner) system. It uses a blend of different Artificial Intelligence techniques to overcome variety 
issues and identify relevant events within log files. LAMaLearner is able to cluster events and generate 
human readable representations for all events within a cluster. A human being can annotate these clusters 
with specific labels. After these labels exist, LAMaLearner leverages machine learning based natural 
language processing techniques to label events even in changing log formats. Additionally, LAMaLearner is 
capable of identifying previously known named entities occurring anywhere within the logged event as well 
identifying frequently co-occurring variables in otherwise fixed log events. In order to stay up-to-date 
LAMaLearner includes a continuous feedback interface that facilitates active learning. In experiments with 
multiple differently formatted log files, LAMaLearner was capable of reducing the labeling effort by up to 
three orders of magnitude. Models trained on this labeled data achieved > 93% F1 in detecting relevant 
event classes. This way, LAMaLearner helps log management and SIEM operations in three ways: Firstly, it 
creates a quick overview about the content of previously unknown log files. Secondly, it can be used to 
massively reduce the required manual effort in log management and SIEM operations. Thirdly, it identifies 
commonly co-occurring values within logs which can be used to identify otherwise unknown aspects of 
large log files. 
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1 INTRODUCTION 

Computers and network components like switches, 
routers or firewalls create log files that list events 
occuring on them. Originally, these log files were 
only used for troubleshooting problems after errors 
have occurred. Since then, technology has been 
developed that can react immediately to the 
occurrence of specific events within logs. More 
interesting use cases arise when one combines log 
files from multiple machines to get a bigger picture 
of events occuring within the IT environment of an 

organization. The process of generating, 
transmitting, storing, analyzing and disposing of log 
data is referred to as log management (Kent and 
Souppaya, 2006). Centrally collecting log files from 
different components provides a number of tangible 
advantages. Firstly, log files can be accessed even if 
the machine that originally generated them is no 
longer available. Secondly, central analysis and 
correlation is only possible if the relevant log files 
are centrally stored. The widespread deployment of 
modern computing and networking machinery 
generates challenges for organizations attempting to 



leverage central log management. These challenges 
are similar to those expressed by Gartner (2011) as 
the three Vs of Big Data:  

Firstly there is the problem of volume: The 
generated amount of log files can easily reach 
Terabytes. Secondly there is the problem of velocity 
as depending on what is happening in the computing 
environment, log files can be generated at a rapid 
pace. Scale-out architectures, that distribute the 
workload across multiple machines are capable of 
handling these volume and velocity problems 
effectively (Singh & Reddy 2014). The third 
problem of big data is variety. In the case of log 
management, it stems from the lack of a mandatory 
norm for log formats. Essentially, every log file is 
different. Manually interpreting enormous amounts 
of such log data can easily overwhelm a human 
being that attempts this task (Varanadi, 2003).  

The process of transforming heterogenous log 
formats to a common output that is centrally stored 
is also referred to as event normalization (Teixeira, 
2017). This is mainly achieved by using parsers that 
apply regular expressions to extract specific values 
from logs in previously known formats. These are 
subsequently stored in a normalized fashion within 
searchable databases. The data quality within these 
databases is strongly dependant on the parsing 
quality. Even though parsing rules for common log 
files are freely shared on the Internet, these usually 
only match highly specific fields such as time 
stamps and source ip adresses. The essential 
unstructured, natural language message gets 
frequently stored as a string.  

Security Information and Event Management 
(SIEM) attempts to leverage centrally managed logs 
to increase the IT security of an organization 
(Williams and Nicolett, 2005). In practice, specific 
event types are oftentimes visualized by occurrence 
per time frame. For instance the amount of failed log 
in attempts per hour. One can also define alert rules 
that trigger automated stepts. An example for such 
an alert rule are to inform a human being if there are 
more than 10 firewall rejections per minute or that 
malware was detected on a computer within the 
network (Swift, 2010). Currently, the only way to 
identify specific events is to know the log format in 
advance and having a pattern that can match to the 
specific event during normalization. As pointed out, 
there is no norm for log events. Additionally, the 
format of the log file can change with updates of the 
utilized software. Therefore, the implementation and 
updating of Log Management and SIEM systems are 
labor intensive.  

In this work, we introduce the Log Analysis 
Machine Learner (LAMaLearner). It uses a blend of 
different artificial intelligence techniques in order to 
minimize the effort of implementing SIEM and log 
management practices within organizations. This is 
especially relevant for Small or Medium Enterprises 
(SMEs) that oftentimes do not possess the necessary 
human resources to employ large teams focusing on 
log management and SIEM. To do so, this paper 
outlines the relevant state of the art and technology 
of this field in section 2. Section 3 describes our 
underlying model which is followed up by section 4 
that provides some details about the implementation 
of this technology. Section 5 evaluates the 
effectiveness of LAMaLearner for a number of 
different log file formats and provides information 
about the time and effort that was saved by using 
LAMaLearner for Log Management projects. Last 
but not least, section 6 finishes with our conclusions 
about the usage of AI to overcome variety 
challenges in log management and SIEM.  

2 STATE OF THE ART 

There are many tools for log management. Some 
frequently mentioned commercial options are 
Splunk, IBM QRadar, Loggly, Logentries, and sumo 
logic (Splunk, 2019) (IBM, 2019) (Loggly, 2019) 
(Logentries, 2019) (Sumo Logic, 2019). Most of the 
aforementioned systems are cloud based and require 
a connection to the provider in order to perform the 
necessary log management. A popular open source 
solution is the Elastic Stack (formerly known as 
ELK Stack), which is maintained by the company 
ElasticSearch which also offers support for the 
solution (Elastic, 2019). This company’s full-text 
search engine goes by the same name and is an 
integral part of the Elastic Stack. Another popular 
open source solution is Graylog which is maintained 
and supported by the company of the same name 
(Graylog, 2019). To the best of our knowledge, all 
these log management solutions either require 
manual pattern defintions to match relevant known 
events or provide taxonomies of relevant events for 
specific systems. None use artificial intelligence 
technology for this purpose. In the context of log 
management, AI technologies are frequently used 
for anomaly detection of aggregated event 
occurences per time frame instead of the 
identification and representation of relevant events 
(Splunk, 2019) (IBM, 2019) (Elastic, 2019).  

A detailed examination of these log management 
technologies as well as all contemporary AI 



techniques goes well beyond the scope of this paper. 
Therefore the remainder of this section focuses on 
relevant approaches useful for overcoming the 
aforementioned log management variety problem.  

Vaarandi (2003) proposes a data clustering 
algorithm for mining patterns from event logs. 
Different from other text clustering approaches, this 
algorithm has the key insight, that log messages are 
actually created by fixed patterns in which variables 
are substituted by their specific values. Vaarandi’s 
algorithm uses this insight by the creation of 1-
regions, which are specific terms at specific 
positions within multiple events. Events that share 
multiple 1-regions are candidates for clusters. The 1-
regions essentially provide the fixed parts of the 
message while the intermediate words form the 
variables that are used in the messages. Vaarandi’s 
algorithm works in O(|events|) time as it only needs 
to iterate a fixed amount of times over the events to 
identify 1-regions and group common events into 
clusters. It also outputs a representative pattern that 
can be used as regular expression to match to all 
events making up the cluster.  

Besides the clustering of events and generation 
of representations for these clusters, interactive 
labeling and machine learning based text 
categorization are important corner stones of 
LAMaLearner. The Cloud Classifier Committee 
(C3) is a collection of microservices that ease the 
implementation of text categorization solutions 
(Swoboda et al., 2016). In their work, Eljasik-
Swoboda et al. (2019) extended the core C3 idea and 
described two relevant concepts: Firstly, the 
trainer/athlete pattern which allows scale-out for 
machine learning based text categorization tasks. 
Here, a trainer node computes a model that is shared 
with athlete nodes. The actual inference work is 
performed by the athlete nodes. 

Secondly, the TFIDF-SVM was proposed. This 
service implements the trainer/athlete pattern and 
uses the LibSVM library to implement Support 
Vector Machines (SVMs) for supervised machine 
learning (Chang and Lin, 2011). Besides the SVMs, 
TFIDF-SVM works with a feature extraction and 
selection method that is inspired by the TFIDF 
formula common for information retrieval (1). It 
essentially measures the importance of how 
representative certain terms (tk) are for certain 
documents (d). 
 

tfidf(tk,di)=#(tk,di)*log(|TS|/#TS(tk)) (1)
 
The TFIDF-SVM trainer service selects the most 

relevant features based on their TFIDF values and 

combines them with a SVM model that is evaluated 
using n-fold cross-validation. TFIDF-SVM was 
evaluated in the challenging argument stance 
recognition task and achieved up to .96 F1 for 
previously unknown arguments about the same topic 
it was trained on. Encouragingly, it was also able to 
achieve up to .6 F1 when determining the stance of 
arguments for previously unseen topics. This 
suggests that TFIDF-SVM models can be transferred 
to new problems with completely unseen data 
without modification. The aforementioned is highly 
interesting for the log analysis use case as not 
knowing the precise format of new log files is the 
overall challenge this research aims to overcome. 

Chawla et al. (2002) introduced the Synthetic 
Minority Over-sampling Technique (SMOTE). The 
idea is to overcome issues arising from imbalanced 
datasets by synthetically oversampling minority 
classes so that the acutal machine learning model is 
trained on a more balanced dataset. This is crucial 
for the log analysis problem because relevant error 
messages are oftentimes few and far between 
repeatedly occuring success messages.  

Named-entity recognition is the act of identifying 
specific named entities, such as locations from text 
(Jurafsky, 2009). These could be names or locations 
in which multiple strings can point to the same entity 
or type of entity. For instance, Malta and Austria are 
both countries. The next section illustrates how these 
design patterns and techniques are used to create 
LAMaLearner. 

3 MODEL 

LAMaLearner starts its operation without any 
information about the log format and content. To 
start working with log messages, LAMaLearner 
implements a key-value store for evens: A numerical 
key is used to identify an object that contains a 
message string and a time string. As there can be 
many different time formats, LAMaLearner ignores 
the time value only offering this field for users to 
read. It can also be left empty. 

As soon as LAMaLearner is provided with 
events, it can create clusters of events with 
corresponding representations by using a modified 
version of Vaarandi’s algorithm described in section 
2. Our modification is in the identification of nested 
clusters, so that LAMaLearner can also compute 
sub-clusters of found outer clusters. This operation 
however requires the comparison of all clusters with 
each other, so that this operation requires 
O(|events|+|clusters|²) steps. Vaarandi’s algorithm 
has a threshold hyper-parameter that determines in 



how many events the same term has to occur at the 
same place to be considered a 1-region (see section 
2). Increasing this parameter decreases the amount 
of clusters that are found. The result set also displays 
all stored events that do not fit into any of the 
generated clusters.  

The individual cluster representations are a 
sequence of fixed 1-region terms F={f1,…,fn} 
intermixed with variable terms V={v1,…,vm}. For all 
events within one cluster, F is identical, while the 
values for V contain different terms. We use this 
property for the created clusters for two additional 
analysis steps: Firstly, the detection of named 
entities. In the current version, we use lists of terms 
or regular expressions to represent named entities 
such as usernames, DNS names, IP addresses, and 
email addresses. Identifying named entities for F is 
performed by matching f1,…,fn to the stored entities. 
As v1,…,vm are lists of different values per event that 
was assigned to the cluster, these are actually each a 
list of different terms. Therefore, LAMaLearner 
attempts to identify, if all terms within 𝑣 ∈ 𝑉  are 
matching to the same regular expression. This can be 
used in the cluster representation by creating 
representations such as Router {hostname} interface 
{ip} down in which {hostname} and {ip} are named 
entities represented by common regular expressions.  

The identification of F and V per cluster also 
yields another opportunity for analysis. Namely the 
identification of commonly co-occurring variables in 
V. A matrix of how often variable values co-occur in 
the same event can be computed. Without additional 
knowledge about the analyzed log files, one can 
infer related values within clusters. For instance co-
occurring hostnames and IP addresses or Microsoft 
Active Directory Security Identifier and human 
readable user names. These commonly co-occurring 
values are provided to the user after clustering 
events. 

This way, users can quickly gain an overlook 
about the available messages within the analyzed log 
files. Depending on their required application, users 
can start to annotate messages accordingly. 
Examples for appropriate labels largely depend on 
the analyzed log files. Practical examples from an 
Apache Tomcat application log file are success, 
exception, database connection terminated, SQL 
syntax error and client caused db error. Example 
labels for security log files can be successful logins, 
failed logins, and malware detected.  

In comparison to annotating thousands of 
individual events, this clustering step compresses the 
task to annotating tens of clusters, massively 
speeding up the process. Annotated clusters are 
stored in a portable way. This means, that every 
cluster object contains a list of annotated labels. 
LAMaLearner implements the trainer/athlete pattern 

to compute its models. The trainer node extends the 
TFIDF-SVM approach with the synthetic minority 
oversampling technique as follows:  

Labelled clusters form the documents for which 
a TFIDF-matrix is computed. As cluster labels are 
known, the amount of clusters per label is also 
known. To present the subsequent process with a 
more balanced problem, LAMaLearner generates 
synthetic samples for all minority classes by 
randomly concatenating terms occurring in existing 
cluster representations of the minority labels. For the 
sake of repeatability, LAMaLearner performs this 
process using a fixed random seed. After this 
creation of synthetic samples, there is an equal 
amount of training samples for each class. 
Additionally, LAMaLearner computes the average 
amount of labels that are assigned to each existing 
sample cluster. LAMaLearner subsequently uses the 
same feature extraction scheme as described by 
Eljasik-Swoboda et al. (2019). To do so, it only 
takes real samples into account. This means, that it 
ignores the synthetically generated samples for its 
feature extraction and selection scheme.  

After determining relevant terms for feature 
extraction and selection, LAMaLearner triggers an 
n-fold cross-validation process. It is important to 
note, that only real labelled clusters are used as 
evaluation samples. The generated synthetic samples 
are only used for training. As with TFIDF-SVM, 
LibSVM is used to compute hyperplanes capable of 
identifying appropriate labels. While TFIDF-SVM 
works with an assignment threshold to determine if 
documents should be assigned to a certain label, 
LAMaLearner extends this decision with the average 
amount of assignments learned from its un-
augmented training set. It is noteworthy, that for this 
supervised learning process, the exact positioning of 
terms within events is intentionally ignored. This 
information is only used for the unsupervised 
clustering phase. The purpose for ignoring the exact 
positioning of relevant terms is to create robustness 
against changing formats. While the ordering of 
specific terms can change with every software 
update, semantic shift happens much slower. For 
example logged terms like failure, exception, fatal, 
or malware don’t change in meaning depending on 
where they are in the log message. 

After n models have been computed, the best is 
selected. The selection metric (precision, recall, F1, 
microaverage, macroaverage) can be selected before 
training. This best model is then stored by the trainer 
node, so that any athlete node can obtain the model 
by querying it. The model object also contains 
relevant metadata about the model. Besides 
information about the creator, log type and use case 
it has been trained for, detailed evaluation results are 
stored. 



Figure 1: LAMaLearner overall learning process: Firstly, unknown event messages are collected in nested clusters. These 
can be labeled in < 1% of the time necessary to label all individual messages. Based on these labelled clusters, a model 
capable of labelling clusters and individual messages is computed. It contains its effectiveness evaluation. This model can 
successfully be used to label previously unknown log messages in the same and different formats. If mistakes occur, these 
can be corrected and the model can be improved. 

This way, whenever an athlete node is using this 
model, users can display how effective the used 
model was during evaluation. 

A LAMaLearner athlete node needs an active 
model so that it can automatically annotate any 
event or cluster with a label. A big advantage of 
SVMs is their speed and low resource consumption. 
Combined with the feature selection scheme, large 
amounts of events can rapidly be automatically 
labelled. This task can easily be scaled out across 
multiple machines. LAMaLearner also allows for the 
definition of fixed rules. These rules are made up of 
indicator terms which occurrence strongly suggest a 
specific label. Rule based results can be combined 
with the active model either using a logic AND or a 
logic OR operator. In addition to label individual 
events, the before mentioned approach to identify 
named entities is used on every event message. 
These allow for filtering of labels in combination 
with entities and values, for instance to display only 
failure events for specific usernames. 

Besides manually annotating clusters, 
LAMaLearner can also work with manually 
annotated events to increase the size of its training 
and evaluation set. This allows for an interactive 
training loop in which false results can be corrected 
and a new training process can be triggered to 
further increase a model’s effectiveness. Labels are 
assigned with a risk score which is a value indicating 

the urgency of events having this label. As multiple 
labels can be assigned to each event or cluster, 
LAMaLearner computers an overall risk score per 
cluster or label using formula 2.  
 𝑟(𝑒௜) = ∏ 𝑝൫𝑒௜ , 𝑙௝൯ ∗ 𝑟௝|௟೔|௝ୀ଴ |𝑙௜|  

(2)

 
The formula to compute the overall risk of event 

or cluster i r(ei) is the product of the individual 
probabilities for this event or cluster to have label j 
p(ei,lj) computed by the model and fixed rules 
multiplied with the assigned risk of label j rj. The 
utilized SVMs output a probability for an assigned 
label. Indicator terms are also configured with a 
probability to indicate certain labels. LAMaLearner 
automatically removes unlikely labels from the label 
set of event or cluster i li. Therefore it seldom 
multiplies all label risks per event only concentrating 
on relevant values. LAMaLearner can be configured 
with an overall risk threshold. Whenever an instance 
identifies an event or cluster of a higher risk score 
than this threshold, it can call a freely configurable 
external program via CLI. This can be used to raise 
alarms or initiate automated further actions 
depending on the detected labels. We chose this 
multiplication based method of computing overall 
risk values per cluster or event as it allows for 
negation. For instance one can model different 



aspects of a log managed environment with different 
base risk values. E.g. error messages in firewalls can 
be regarded as more important than those of storage 
components. One can also model success messages 
with a negative risk value. This means, that success 
messages of different components get negative risk 
scores while error messages obtain risk scores in 
relation to the base risk score of impacted 
component class.  

4 IMPLEMENTATION 

The core idea behind Hadoop’s popular MapReduce 
programming model is to move the program to 
where the data resides instead of the other way 
around (Dean and Ghemawat, 2008). We took this 
idea to mind when designing LAMaLearner in a way 
that it can easily be transferred to where ever 
necessary and scaled out where possible. This way, 
potentially sensible information contained within log 
files do not have to leave a secured network 
environment. To meet this objective, we based 
LAMaLearner on Java and packaged it as fat jar file. 
It communicates via a REST/JSON interface. This 
way, it can operate on any platform that supports 
java and has a network interface, allowing for 
integration into many existing log management 
technologies. In order to ease direct interaction with 
LAMaLearner, it also renders a Web GUI which is 
based on JavaScript and communicates with the 
underlying REST/JSON interface. To do so, 
LAMaLearner is based on the Dropwizard 
framework (Dropwizard, 2019). All relevant data is 
stored in memory.  

The creation of clusters or assignment of labels 
to uploaded events can be triggered by sending 
POST requests to the appropriate resources. Hyper-
parameters for these processes are transferred as 
JSON objects to the LAMaLearner instance. 
LAMaLearner keeps track of whether a clustering or 
event labelling process is in progress. If that is the 
case, a new process cannot be triggered. While 
events are clustered, annotated with labels, or a new 
model is computed, LAMaLearner returns a progress 
list that indicates how many of the necessary steps 
have been performed. In order to keep the web 
server responsive and maintain the ability to query 
the LAMaLearner instance for existing results, all 
clustering, labelling and model creation processes 
are executed in independent threads.  

This setup is very flexible and has no external 
dependencies except for Java. Intentionally, 
LAMaLearner does not implement a database to 
persistently store events, clusters, labelled events or 
created models. All data is kept in memory and can 

be exported as JSON object which in turn can be 
imported into another instance. As log files 
themselves are usually not stored as JSON objects, 
this creates the need to interact with an existing log 
management solution that is capable of packaging 
log entries into JSON objects and trigger 
LAMaLearner. It also has to be able to store results 
and process them further, for instance by triggering 
alerts if there are more than 10 firewall rejections 
within a specific time interval. For this purpose we 
use an in-house technology called Modular Abstract 
Data processing Tool (MAD2).  

This piece of software can collect log files from 
lots of different source systems. Using a relational 
data format, Huffman encoding and a multitude of 
compression algorithms, MAD2 can reduce the 
storage requirements for log files. A single instance 
can also process up to 10.000 events per second, 
making this software the interface between the 
actual log files and the LAMaLearner AI.  

5 EVALUATION 

LAMaLearner is a useful tool for exploring new 
unknown log formats and processing them into a 
labelled form for further downstream analysis. To 
evaluate its capabilities, it was tested with different 
real life log files. The person inspecting these log 
files had no prior knowledge about the environments 
they have been created in.  

The first tested log file was a Microsoft-
Windows-Security-Auditing log file. The analyzed 
part of the log file contained 10,000 events. Using a 
threshold of 2, LAMaLearner condensed the 
messages to 79 nested clusters. Manual inspection 
showed that the events contained mainly three types 
of events: Successful logins, successful logoffs, and 
login failures. These clusters were then annotated 
with the labels success and failure. LAMaLearner 
was able to create a model with F1=1. In 
combination with named-entity based filtering, users 
can quickly identify which users or hosts are 
involved in failures. Additionally, the variable co-
occurrence feature of the clustering process allowed 
matching Microsoft Security Identifier to the human 
readable user name only from automatically 
analyzing the log files. 

Interestingly, the same model was then used on a 
Check Point Firewall log which had a vastly 
different format. In a manual evaluation of 50 
events, LAMaLearner was capable to tell successful 
connections (label success) from rejected 
connections (label failure).  

In another test, LAMaLearner was presented 
with a mixed collection of events coming from three 



different source systems: Microsoft-Windows-
Security-Auditing logs, Check Point firewall logs, 
and an Apache webserver access log. This mix 
contained 18,110 events. LAMaLearner created 47 
nested clusters with an assignment threshold of 5 (56 
with an assignment threshold of 2). A model capable 
of telling different source systems apart obtained an 
overall .93 F1 value. In both these cases, the 
clustering approach reduced the time necessary to 
label a large quantity of events by more than two 
orders of magnitude. This means that the time 
required to annotate log events for machine learning 
purposes was reduced to less than 1% of the original 
amount of required time. The learned models were 
highly effective in detecting the correct label for any 
event. On a Windows 10 machine with an Intel I7-
7870 (4 cores, 2.9 GHz) and 16 GB RAM, 
LAMaLearner is capable of labeling >10,000 events 
per second. Besides this core use case of correctly 
classifying events without requiring predefined 
regular expressions, LAMaLearner also provides 
interesting insights into unknown log files. 
Specifically by clustering the afore mentioned 
Check Point firewall log revealed which type of 
network traffic was routed over this firewall.  

An interesting observation was made when 
analyzing the log files of an Apache Tomcat 
application server log. 963 events logged in one day 
were grouped into 56 clusters. Upon first view, four 
reasonable labels were determined: Success, static 
exception, database connection terminated, and 
exception. The 56 clusters from that day were 
manually annotated with these labels and a model 
with F1=1 was computed. As evaluation, the model 
was tasked with labelling the events of the next day 
of this specific server. The second day’s log file 
contained 1,713 messages that were quickly labeled 
with the available labels. Inspection revealed that 
known types of events were correctly labelled. There 
however were new types of events that were either 
interpreted as success or exception. The first one 
was an SQL Syntax Error that has been logged in the 
application server log file. The second one was a 
client caused database error, where a user attempted 
to delete an entry that didn’t exist. By labeling these 
events, an updated model that can determine these 
different labels with F1=1 was easily created. 
Besides having the ability to track security related 
entries in a SIEM platform, this revealed potential 
errors in existing software that one might not have 
noticed in production.  

Another interesting result was obtained by 
leaving the world of classical information 
technology components and analyzing the log files 
of an industrial control computer. 1601 Events were 
clustered into 54 clusters. Manual inspection has 
shown that there are three general classes of events 

within the log file: General status information, 
malfunction, and exceeding thresholds. Using 
LAMaLearner, these can subsequently be visualized 
in a dashboard and enable the operator of the 
environment with a quick overview about what has 
happened in previous time intervals. This provides 
operators with a quick update about the environment 
on shift changes. Named-entity based filtering and 
correlation between variable values in clusters also 
allowed to quickly filtering which component failed 
or exceeded its threshold. In case of exceeding 
thresholds, the values can then quickly be checked 
and actual malfunctions can get investigated. As this 
can be performed on multiple control systems at 
once, a much better overview is gained.  

As last experiment, we generated an artificial log 
file in two different formats. It contained 1000 
events which LAMaLearner clustered to 8 high-level 
clusters (two of which contained a large collection 
of sub-clusters). This artificial log contained events 
about simulated traffic over two different network 
routers. The two high level clusters each represented 
a different router. Their sub-clusters were 
connections from different peers to these routers. 
Overall 98 peers were simulated, each of which had 
their own cluster. The clusters found in the first log 
file were annotated with the labels nominal and 
failure. The latter was used for interface outages. 
Again, a high effectiveness model (F1=1) was 
generated by LAMaLearner. This model was then 
applied to label the events of the second log. The 
second log file contained the same information per 
event but had a completely different ordering of the 
individual variables and different accompanying 
words and characters between those. In this second 
log file, the model was also able to identify nominal 
and failure events with F1=1. Even though this last 
experiment was not conducted with a real-life log 
file, it illustrates LAMaLearner’s robustness against 
changing log formats as soon as models to label said 
formats have been learned.  

6 CONCLUSIONS AND FUTURE 
WORK 

In this work, we have introduced a flexible method 
to overcome variety issues in log management by 
engineering multiple state of the art AI methods into 
a single powerful solution. Our contributions can 
reduce the amount of manual effort in log 
management projects dramatically. It can also shine 
a light on previously undiscovered log file entries as 
it allows their exploration in a reasonable time 
frame. Additionally frequently logged variables such 



as hostnames or users can be identified for further 
investigation. These capabilities are highly 
interesting for small or medium enterprises that 
intent or have to use log management but do not 
have the necessary personnel to successfully 
implement such a practice. It also is not limited to 
information technology security logs but can also be 
used within industrial applications to reveal hidden 
patterns within such environments. Because of its 
practical implementation, LAMaLearner can be 
introduced into any relevant system architecture and 
can handle large amounts of data by having been 
designed to scale out form the beginning. The fact 
that no connection to an external provider is 
necessary and explanations for labeling decisions 
can be generated the same way as explained by 
Eljasik-Swoboda et al. (2019) make this software 
safe to use under strict privacy legislature like the 
European Union’s GDPR (EU, 2016). 

In future works we will use LAMaLearner 
generated event labeling results as input for time 
series anomaly detection and regression 
computation. The current version is limited to 
identify named entities from single words. As of 
now, word n-grams cannot be analyzed. Therefore 
additional ways to create a named entity recognition 
(NER) component minimizing manual effort in its 
definition will also be researched.  
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