
Leveraging Clustering and Natural Language Processing to
Overcome Variety Issues in Log Management

Tobias Eljasik-Swoboda1 a, and Wilhelm Demuth2
1ONTEC AG, Ernst-Melchior-Gasse 24/DG, 1100 Vienna, Austria

2SCHOELLER NETWORK CONTROL GmbH, Ernst-Melchior-Gasse 24/DG, 1100 Vienna, Austria
Tobias.Eljasik-Swoboda@ontec.at, Wilhelm.Demuth@schoeller.at

Keywords: Industrial Applications of AI, Intelligence and Cybersecurity, Machine Learning, Natural Language
Processing, Trainer/Athlete Pattern, Log Analysis, Log Management, Event Normalization, Security
Information and Event Management, Big Data

Abstract: When introducing log management or Security Information and Event Management (SIEM) practices,
organizations are frequently challenged by Gartner’s 3 Vs of Big Data: There is a large volume of data
which is generated at a rapid velocity. These first two Vs can be effectively handled by current scale-out
architectures. The third V is that of variety which affects log management efforts by the lack of a common
mandatory format for log files. Essentially every component can log its events differently. The way it is
logged can change with every software update. This paper describes the Log Analysis Machine Learner
(LAMaLearner) system. It uses a blend of different Artificial Intelligence techniques to overcome variety
issues and identify relevant events within log files. LAMaLearner is able to cluster events and generate
human readable representations for all events within a cluster. A human being can annotate these clusters
with specific labels. After these labels exist, LAMaLearner leverages machine learning based natural
language processing techniques to label events even in changing log formats. Additionally, LAMaLearner is
capable of identifying previously known named entities occurring anywhere within the logged event as well
identifying frequently co-occurring variables in otherwise fixed log events. In order to stay up-to-date
LAMaLearner includes a continuous feedback interface that facilitates active learning. In experiments with
multiple differently formatted log files, LAMaLearner was capable of reducing the labeling effort by up to
three orders of magnitude. Models trained on this labeled data achieved > 93% F1 in detecting relevant
event classes. This way, LAMaLearner helps log management and SIEM operations in three ways: Firstly, it
creates a quick overview about the content of previously unknown log files. Secondly, it can be used to
massively reduce the required manual effort in log management and SIEM operations. Thirdly, it identifies
commonly co-occurring values within logs which can be used to identify otherwise unknown aspects of
large log files.

a https://orcid.org/0000-0003-2464-8461

1 INTRODUCTION

Computers and network components like switches,
routers or firewalls create log files that list events
occuring on them. Originally, these log files were
only used for troubleshooting problems after errors
have occurred. Since then, technology has been
developed that can react immediately to the
occurrence of specific events within logs. More
interesting use cases arise when one combines log
files from multiple machines to get a bigger picture
of events occuring within the IT environment of an

organization. The process of generating,
transmitting, storing, analyzing and disposing of log
data is referred to as log management (Kent and
Souppaya, 2006). Centrally collecting log files from
different components provides a number of tangible
advantages. Firstly, log files can be accessed even if
the machine that originally generated them is no
longer available. Secondly, central analysis and
correlation is only possible if the relevant log files
are centrally stored. The widespread deployment of
modern computing and networking machinery
generates challenges for organizations attempting to

leverage central log management. These challenges
are similar to those expressed by Gartner (2011) as
the three Vs of Big Data:

Firstly there is the problem of volume: The
generated amount of log files can easily reach
Terabytes. Secondly there is the problem of velocity
as depending on what is happening in the computing
environment, log files can be generated at a rapid
pace. Scale-out architectures, that distribute the
workload across multiple machines are capable of
handling these volume and velocity problems
effectively (Singh & Reddy 2014). The third
problem of big data is variety. In the case of log
management, it stems from the lack of a mandatory
norm for log formats. Essentially, every log file is
different. Manually interpreting enormous amounts
of such log data can easily overwhelm a human
being that attempts this task (Varanadi, 2003).

The process of transforming heterogenous log
formats to a common output that is centrally stored
is also referred to as event normalization (Teixeira,
2017). This is mainly achieved by using parsers that
apply regular expressions to extract specific values
from logs in previously known formats. These are
subsequently stored in a normalized fashion within
searchable databases. The data quality within these
databases is strongly dependant on the parsing
quality. Even though parsing rules for common log
files are freely shared on the Internet, these usually
only match highly specific fields such as time
stamps and source ip adresses. The essential
unstructured, natural language message gets
frequently stored as a string.

Security Information and Event Management
(SIEM) attempts to leverage centrally managed logs
to increase the IT security of an organization
(Williams and Nicolett, 2005). In practice, specific
event types are oftentimes visualized by occurrence
per time frame. For instance the amount of failed log
in attempts per hour. One can also define alert rules
that trigger automated stepts. An example for such
an alert rule are to inform a human being if there are
more than 10 firewall rejections per minute or that
malware was detected on a computer within the
network (Swift, 2010). Currently, the only way to
identify specific events is to know the log format in
advance and having a pattern that can match to the
specific event during normalization. As pointed out,
there is no norm for log events. Additionally, the
format of the log file can change with updates of the
utilized software. Therefore, the implementation and
updating of Log Management and SIEM systems are
labor intensive.

In this work, we introduce the Log Analysis
Machine Learner (LAMaLearner). It uses a blend of
different artificial intelligence techniques in order to
minimize the effort of implementing SIEM and log
management practices within organizations. This is
especially relevant for Small or Medium Enterprises
(SMEs) that oftentimes do not possess the necessary
human resources to employ large teams focusing on
log management and SIEM. To do so, this paper
outlines the relevant state of the art and technology
of this field in section 2. Section 3 describes our
underlying model which is followed up by section 4
that provides some details about the implementation
of this technology. Section 5 evaluates the
effectiveness of LAMaLearner for a number of
different log file formats and provides information
about the time and effort that was saved by using
LAMaLearner for Log Management projects. Last
but not least, section 6 finishes with our conclusions
about the usage of AI to overcome variety
challenges in log management and SIEM.

2 STATE OF THE ART

There are many tools for log management. Some
frequently mentioned commercial options are
Splunk, IBM QRadar, Loggly, Logentries, and sumo
logic (Splunk, 2019) (IBM, 2019) (Loggly, 2019)
(Logentries, 2019) (Sumo Logic, 2019). Most of the
aforementioned systems are cloud based and require
a connection to the provider in order to perform the
necessary log management. A popular open source
solution is the Elastic Stack (formerly known as
ELK Stack), which is maintained by the company
ElasticSearch which also offers support for the
solution (Elastic, 2019). This company’s full-text
search engine goes by the same name and is an
integral part of the Elastic Stack. Another popular
open source solution is Graylog which is maintained
and supported by the company of the same name
(Graylog, 2019). To the best of our knowledge, all
these log management solutions either require
manual pattern defintions to match relevant known
events or provide taxonomies of relevant events for
specific systems. None use artificial intelligence
technology for this purpose. In the context of log
management, AI technologies are frequently used
for anomaly detection of aggregated event
occurences per time frame instead of the
identification and representation of relevant events
(Splunk, 2019) (IBM, 2019) (Elastic, 2019).

A detailed examination of these log management
technologies as well as all contemporary AI

techniques goes well beyond the scope of this paper.
Therefore the remainder of this section focuses on
relevant approaches useful for overcoming the
aforementioned log management variety problem.

Vaarandi (2003) proposes a data clustering
algorithm for mining patterns from event logs.
Different from other text clustering approaches, this
algorithm has the key insight, that log messages are
actually created by fixed patterns in which variables
are substituted by their specific values. Vaarandi’s
algorithm uses this insight by the creation of 1-
regions, which are specific terms at specific
positions within multiple events. Events that share
multiple 1-regions are candidates for clusters. The 1-
regions essentially provide the fixed parts of the
message while the intermediate words form the
variables that are used in the messages. Vaarandi’s
algorithm works in O(|events|) time as it only needs
to iterate a fixed amount of times over the events to
identify 1-regions and group common events into
clusters. It also outputs a representative pattern that
can be used as regular expression to match to all
events making up the cluster.

Besides the clustering of events and generation
of representations for these clusters, interactive
labeling and machine learning based text
categorization are important corner stones of
LAMaLearner. The Cloud Classifier Committee
(C3) is a collection of microservices that ease the
implementation of text categorization solutions
(Swoboda et al., 2016). In their work, Eljasik-
Swoboda et al. (2019) extended the core C3 idea and
described two relevant concepts: Firstly, the
trainer/athlete pattern which allows scale-out for
machine learning based text categorization tasks.
Here, a trainer node computes a model that is shared
with athlete nodes. The actual inference work is
performed by the athlete nodes.

Secondly, the TFIDF-SVM was proposed. This
service implements the trainer/athlete pattern and
uses the LibSVM library to implement Support
Vector Machines (SVMs) for supervised machine
learning (Chang and Lin, 2011). Besides the SVMs,
TFIDF-SVM works with a feature extraction and
selection method that is inspired by the TFIDF
formula common for information retrieval (1). It
essentially measures the importance of how
representative certain terms (tk) are for certain
documents (d).

tfidf(tk,di)=#(tk,di)*log(|TS|/#TS(tk)) (1)

The TFIDF-SVM trainer service selects the most

relevant features based on their TFIDF values and

combines them with a SVM model that is evaluated
using n-fold cross-validation. TFIDF-SVM was
evaluated in the challenging argument stance
recognition task and achieved up to .96 F1 for
previously unknown arguments about the same topic
it was trained on. Encouragingly, it was also able to
achieve up to .6 F1 when determining the stance of
arguments for previously unseen topics. This
suggests that TFIDF-SVM models can be transferred
to new problems with completely unseen data
without modification. The aforementioned is highly
interesting for the log analysis use case as not
knowing the precise format of new log files is the
overall challenge this research aims to overcome.

Chawla et al. (2002) introduced the Synthetic
Minority Over-sampling Technique (SMOTE). The
idea is to overcome issues arising from imbalanced
datasets by synthetically oversampling minority
classes so that the acutal machine learning model is
trained on a more balanced dataset. This is crucial
for the log analysis problem because relevant error
messages are oftentimes few and far between
repeatedly occuring success messages.

Named-entity recognition is the act of identifying
specific named entities, such as locations from text
(Jurafsky, 2009). These could be names or locations
in which multiple strings can point to the same entity
or type of entity. For instance, Malta and Austria are
both countries. The next section illustrates how these
design patterns and techniques are used to create
LAMaLearner.

3 MODEL

LAMaLearner starts its operation without any
information about the log format and content. To
start working with log messages, LAMaLearner
implements a key-value store for evens: A numerical
key is used to identify an object that contains a
message string and a time string. As there can be
many different time formats, LAMaLearner ignores
the time value only offering this field for users to
read. It can also be left empty.

As soon as LAMaLearner is provided with
events, it can create clusters of events with
corresponding representations by using a modified
version of Vaarandi’s algorithm described in section
2. Our modification is in the identification of nested
clusters, so that LAMaLearner can also compute
sub-clusters of found outer clusters. This operation
however requires the comparison of all clusters with
each other, so that this operation requires
O(|events|+|clusters|²) steps. Vaarandi’s algorithm
has a threshold hyper-parameter that determines in

how many events the same term has to occur at the
same place to be considered a 1-region (see section
2). Increasing this parameter decreases the amount
of clusters that are found. The result set also displays
all stored events that do not fit into any of the
generated clusters.

The individual cluster representations are a
sequence of fixed 1-region terms F={f1,…,fn}
intermixed with variable terms V={v1,…,vm}. For all
events within one cluster, F is identical, while the
values for V contain different terms. We use this
property for the created clusters for two additional
analysis steps: Firstly, the detection of named
entities. In the current version, we use lists of terms
or regular expressions to represent named entities
such as usernames, DNS names, IP addresses, and
email addresses. Identifying named entities for F is
performed by matching f1,…,fn to the stored entities.
As v1,…,vm are lists of different values per event that
was assigned to the cluster, these are actually each a
list of different terms. Therefore, LAMaLearner
attempts to identify, if all terms within 𝑣 ∈ 𝑉 are
matching to the same regular expression. This can be
used in the cluster representation by creating
representations such as Router {hostname} interface
{ip} down in which {hostname} and {ip} are named
entities represented by common regular expressions.

The identification of F and V per cluster also
yields another opportunity for analysis. Namely the
identification of commonly co-occurring variables in
V. A matrix of how often variable values co-occur in
the same event can be computed. Without additional
knowledge about the analyzed log files, one can
infer related values within clusters. For instance co-
occurring hostnames and IP addresses or Microsoft
Active Directory Security Identifier and human
readable user names. These commonly co-occurring
values are provided to the user after clustering
events.

This way, users can quickly gain an overlook
about the available messages within the analyzed log
files. Depending on their required application, users
can start to annotate messages accordingly.
Examples for appropriate labels largely depend on
the analyzed log files. Practical examples from an
Apache Tomcat application log file are success,
exception, database connection terminated, SQL
syntax error and client caused db error. Example
labels for security log files can be successful logins,
failed logins, and malware detected.

In comparison to annotating thousands of
individual events, this clustering step compresses the
task to annotating tens of clusters, massively
speeding up the process. Annotated clusters are
stored in a portable way. This means, that every
cluster object contains a list of annotated labels.
LAMaLearner implements the trainer/athlete pattern

to compute its models. The trainer node extends the
TFIDF-SVM approach with the synthetic minority
oversampling technique as follows:

Labelled clusters form the documents for which
a TFIDF-matrix is computed. As cluster labels are
known, the amount of clusters per label is also
known. To present the subsequent process with a
more balanced problem, LAMaLearner generates
synthetic samples for all minority classes by
randomly concatenating terms occurring in existing
cluster representations of the minority labels. For the
sake of repeatability, LAMaLearner performs this
process using a fixed random seed. After this
creation of synthetic samples, there is an equal
amount of training samples for each class.
Additionally, LAMaLearner computes the average
amount of labels that are assigned to each existing
sample cluster. LAMaLearner subsequently uses the
same feature extraction scheme as described by
Eljasik-Swoboda et al. (2019). To do so, it only
takes real samples into account. This means, that it
ignores the synthetically generated samples for its
feature extraction and selection scheme.

After determining relevant terms for feature
extraction and selection, LAMaLearner triggers an
n-fold cross-validation process. It is important to
note, that only real labelled clusters are used as
evaluation samples. The generated synthetic samples
are only used for training. As with TFIDF-SVM,
LibSVM is used to compute hyperplanes capable of
identifying appropriate labels. While TFIDF-SVM
works with an assignment threshold to determine if
documents should be assigned to a certain label,
LAMaLearner extends this decision with the average
amount of assignments learned from its un-
augmented training set. It is noteworthy, that for this
supervised learning process, the exact positioning of
terms within events is intentionally ignored. This
information is only used for the unsupervised
clustering phase. The purpose for ignoring the exact
positioning of relevant terms is to create robustness
against changing formats. While the ordering of
specific terms can change with every software
update, semantic shift happens much slower. For
example logged terms like failure, exception, fatal,
or malware don’t change in meaning depending on
where they are in the log message.

After n models have been computed, the best is
selected. The selection metric (precision, recall, F1,
microaverage, macroaverage) can be selected before
training. This best model is then stored by the trainer
node, so that any athlete node can obtain the model
by querying it. The model object also contains
relevant metadata about the model. Besides
information about the creator, log type and use case
it has been trained for, detailed evaluation results are
stored.

Figure 1: LAMaLearner overall learning process: Firstly, unknown event messages are collected in nested clusters. These
can be labeled in < 1% of the time necessary to label all individual messages. Based on these labelled clusters, a model
capable of labelling clusters and individual messages is computed. It contains its effectiveness evaluation. This model can
successfully be used to label previously unknown log messages in the same and different formats. If mistakes occur, these
can be corrected and the model can be improved.

This way, whenever an athlete node is using this
model, users can display how effective the used
model was during evaluation.

A LAMaLearner athlete node needs an active
model so that it can automatically annotate any
event or cluster with a label. A big advantage of
SVMs is their speed and low resource consumption.
Combined with the feature selection scheme, large
amounts of events can rapidly be automatically
labelled. This task can easily be scaled out across
multiple machines. LAMaLearner also allows for the
definition of fixed rules. These rules are made up of
indicator terms which occurrence strongly suggest a
specific label. Rule based results can be combined
with the active model either using a logic AND or a
logic OR operator. In addition to label individual
events, the before mentioned approach to identify
named entities is used on every event message.
These allow for filtering of labels in combination
with entities and values, for instance to display only
failure events for specific usernames.

Besides manually annotating clusters,
LAMaLearner can also work with manually
annotated events to increase the size of its training
and evaluation set. This allows for an interactive
training loop in which false results can be corrected
and a new training process can be triggered to
further increase a model’s effectiveness. Labels are
assigned with a risk score which is a value indicating

the urgency of events having this label. As multiple
labels can be assigned to each event or cluster,
LAMaLearner computers an overall risk score per
cluster or label using formula 2.
 𝑟(𝑒௜) = ∏ 𝑝൫𝑒௜ , 𝑙௝൯ ∗ 𝑟௝|௟೔|௝ୀ଴ |𝑙௜|

(2)

The formula to compute the overall risk of event

or cluster i r(ei) is the product of the individual
probabilities for this event or cluster to have label j
p(ei,lj) computed by the model and fixed rules
multiplied with the assigned risk of label j rj. The
utilized SVMs output a probability for an assigned
label. Indicator terms are also configured with a
probability to indicate certain labels. LAMaLearner
automatically removes unlikely labels from the label
set of event or cluster i li. Therefore it seldom
multiplies all label risks per event only concentrating
on relevant values. LAMaLearner can be configured
with an overall risk threshold. Whenever an instance
identifies an event or cluster of a higher risk score
than this threshold, it can call a freely configurable
external program via CLI. This can be used to raise
alarms or initiate automated further actions
depending on the detected labels. We chose this
multiplication based method of computing overall
risk values per cluster or event as it allows for
negation. For instance one can model different

aspects of a log managed environment with different
base risk values. E.g. error messages in firewalls can
be regarded as more important than those of storage
components. One can also model success messages
with a negative risk value. This means, that success
messages of different components get negative risk
scores while error messages obtain risk scores in
relation to the base risk score of impacted
component class.

4 IMPLEMENTATION

The core idea behind Hadoop’s popular MapReduce
programming model is to move the program to
where the data resides instead of the other way
around (Dean and Ghemawat, 2008). We took this
idea to mind when designing LAMaLearner in a way
that it can easily be transferred to where ever
necessary and scaled out where possible. This way,
potentially sensible information contained within log
files do not have to leave a secured network
environment. To meet this objective, we based
LAMaLearner on Java and packaged it as fat jar file.
It communicates via a REST/JSON interface. This
way, it can operate on any platform that supports
java and has a network interface, allowing for
integration into many existing log management
technologies. In order to ease direct interaction with
LAMaLearner, it also renders a Web GUI which is
based on JavaScript and communicates with the
underlying REST/JSON interface. To do so,
LAMaLearner is based on the Dropwizard
framework (Dropwizard, 2019). All relevant data is
stored in memory.

The creation of clusters or assignment of labels
to uploaded events can be triggered by sending
POST requests to the appropriate resources. Hyper-
parameters for these processes are transferred as
JSON objects to the LAMaLearner instance.
LAMaLearner keeps track of whether a clustering or
event labelling process is in progress. If that is the
case, a new process cannot be triggered. While
events are clustered, annotated with labels, or a new
model is computed, LAMaLearner returns a progress
list that indicates how many of the necessary steps
have been performed. In order to keep the web
server responsive and maintain the ability to query
the LAMaLearner instance for existing results, all
clustering, labelling and model creation processes
are executed in independent threads.

This setup is very flexible and has no external
dependencies except for Java. Intentionally,
LAMaLearner does not implement a database to
persistently store events, clusters, labelled events or
created models. All data is kept in memory and can

be exported as JSON object which in turn can be
imported into another instance. As log files
themselves are usually not stored as JSON objects,
this creates the need to interact with an existing log
management solution that is capable of packaging
log entries into JSON objects and trigger
LAMaLearner. It also has to be able to store results
and process them further, for instance by triggering
alerts if there are more than 10 firewall rejections
within a specific time interval. For this purpose we
use an in-house technology called Modular Abstract
Data processing Tool (MAD2).

This piece of software can collect log files from
lots of different source systems. Using a relational
data format, Huffman encoding and a multitude of
compression algorithms, MAD2 can reduce the
storage requirements for log files. A single instance
can also process up to 10.000 events per second,
making this software the interface between the
actual log files and the LAMaLearner AI.

5 EVALUATION

LAMaLearner is a useful tool for exploring new
unknown log formats and processing them into a
labelled form for further downstream analysis. To
evaluate its capabilities, it was tested with different
real life log files. The person inspecting these log
files had no prior knowledge about the environments
they have been created in.

The first tested log file was a Microsoft-
Windows-Security-Auditing log file. The analyzed
part of the log file contained 10,000 events. Using a
threshold of 2, LAMaLearner condensed the
messages to 79 nested clusters. Manual inspection
showed that the events contained mainly three types
of events: Successful logins, successful logoffs, and
login failures. These clusters were then annotated
with the labels success and failure. LAMaLearner
was able to create a model with F1=1. In
combination with named-entity based filtering, users
can quickly identify which users or hosts are
involved in failures. Additionally, the variable co-
occurrence feature of the clustering process allowed
matching Microsoft Security Identifier to the human
readable user name only from automatically
analyzing the log files.

Interestingly, the same model was then used on a
Check Point Firewall log which had a vastly
different format. In a manual evaluation of 50
events, LAMaLearner was capable to tell successful
connections (label success) from rejected
connections (label failure).

In another test, LAMaLearner was presented
with a mixed collection of events coming from three

different source systems: Microsoft-Windows-
Security-Auditing logs, Check Point firewall logs,
and an Apache webserver access log. This mix
contained 18,110 events. LAMaLearner created 47
nested clusters with an assignment threshold of 5 (56
with an assignment threshold of 2). A model capable
of telling different source systems apart obtained an
overall .93 F1 value. In both these cases, the
clustering approach reduced the time necessary to
label a large quantity of events by more than two
orders of magnitude. This means that the time
required to annotate log events for machine learning
purposes was reduced to less than 1% of the original
amount of required time. The learned models were
highly effective in detecting the correct label for any
event. On a Windows 10 machine with an Intel I7-
7870 (4 cores, 2.9 GHz) and 16 GB RAM,
LAMaLearner is capable of labeling >10,000 events
per second. Besides this core use case of correctly
classifying events without requiring predefined
regular expressions, LAMaLearner also provides
interesting insights into unknown log files.
Specifically by clustering the afore mentioned
Check Point firewall log revealed which type of
network traffic was routed over this firewall.

An interesting observation was made when
analyzing the log files of an Apache Tomcat
application server log. 963 events logged in one day
were grouped into 56 clusters. Upon first view, four
reasonable labels were determined: Success, static
exception, database connection terminated, and
exception. The 56 clusters from that day were
manually annotated with these labels and a model
with F1=1 was computed. As evaluation, the model
was tasked with labelling the events of the next day
of this specific server. The second day’s log file
contained 1,713 messages that were quickly labeled
with the available labels. Inspection revealed that
known types of events were correctly labelled. There
however were new types of events that were either
interpreted as success or exception. The first one
was an SQL Syntax Error that has been logged in the
application server log file. The second one was a
client caused database error, where a user attempted
to delete an entry that didn’t exist. By labeling these
events, an updated model that can determine these
different labels with F1=1 was easily created.
Besides having the ability to track security related
entries in a SIEM platform, this revealed potential
errors in existing software that one might not have
noticed in production.

Another interesting result was obtained by
leaving the world of classical information
technology components and analyzing the log files
of an industrial control computer. 1601 Events were
clustered into 54 clusters. Manual inspection has
shown that there are three general classes of events

within the log file: General status information,
malfunction, and exceeding thresholds. Using
LAMaLearner, these can subsequently be visualized
in a dashboard and enable the operator of the
environment with a quick overview about what has
happened in previous time intervals. This provides
operators with a quick update about the environment
on shift changes. Named-entity based filtering and
correlation between variable values in clusters also
allowed to quickly filtering which component failed
or exceeded its threshold. In case of exceeding
thresholds, the values can then quickly be checked
and actual malfunctions can get investigated. As this
can be performed on multiple control systems at
once, a much better overview is gained.

As last experiment, we generated an artificial log
file in two different formats. It contained 1000
events which LAMaLearner clustered to 8 high-level
clusters (two of which contained a large collection
of sub-clusters). This artificial log contained events
about simulated traffic over two different network
routers. The two high level clusters each represented
a different router. Their sub-clusters were
connections from different peers to these routers.
Overall 98 peers were simulated, each of which had
their own cluster. The clusters found in the first log
file were annotated with the labels nominal and
failure. The latter was used for interface outages.
Again, a high effectiveness model (F1=1) was
generated by LAMaLearner. This model was then
applied to label the events of the second log. The
second log file contained the same information per
event but had a completely different ordering of the
individual variables and different accompanying
words and characters between those. In this second
log file, the model was also able to identify nominal
and failure events with F1=1. Even though this last
experiment was not conducted with a real-life log
file, it illustrates LAMaLearner’s robustness against
changing log formats as soon as models to label said
formats have been learned.

6 CONCLUSIONS AND FUTURE
WORK

In this work, we have introduced a flexible method
to overcome variety issues in log management by
engineering multiple state of the art AI methods into
a single powerful solution. Our contributions can
reduce the amount of manual effort in log
management projects dramatically. It can also shine
a light on previously undiscovered log file entries as
it allows their exploration in a reasonable time
frame. Additionally frequently logged variables such

as hostnames or users can be identified for further
investigation. These capabilities are highly
interesting for small or medium enterprises that
intent or have to use log management but do not
have the necessary personnel to successfully
implement such a practice. It also is not limited to
information technology security logs but can also be
used within industrial applications to reveal hidden
patterns within such environments. Because of its
practical implementation, LAMaLearner can be
introduced into any relevant system architecture and
can handle large amounts of data by having been
designed to scale out form the beginning. The fact
that no connection to an external provider is
necessary and explanations for labeling decisions
can be generated the same way as explained by
Eljasik-Swoboda et al. (2019) make this software
safe to use under strict privacy legislature like the
European Union’s GDPR (EU, 2016).

In future works we will use LAMaLearner
generated event labeling results as input for time
series anomaly detection and regression
computation. The current version is limited to
identify named entities from single words. As of
now, word n-grams cannot be analyzed. Therefore
additional ways to create a named entity recognition
(NER) component minimizing manual effort in its
definition will also be researched.

REFERENCES

Chang, C., Lin, C., LIBSVM: A library for support vector
machines, ACM Transactions on Intelligent Systems
and Technology, volume 2, issue 3, pp 27:1 –27:27,
2011

Chawla, N. V., Bowyer, K. W., Hall, L. O., Keelmeyer,
W. P. 2002. SMOTE: Synthetic Minority Over-
sampling Technique, Journal of Artificial Intelligence
Research, Issue 16, pp. 321-357

Dean, J., Ghemawat S., 2008. MapReduce: simplified data
processing on large clusters. In: Communications of
the ACM issue 51, pp. 107-113.

Dropwizard 2019, Production-ready, out of the box.
https://dropwizard.io Accessed September 12, 2019

Elastic, 2019. Open Source Search & Analytics
Elasticsearch | Elastic https://elastic.co Accessed
September 12, 2019

Eljasik-Swoboda, T., Engel, F., Hemmje, M., 2019. Using
Topic Specific Features for Argument Stance
Recognition. In: Proceedings of the 8th international
conference on data science, technology and
applications (DATA 2019), DOI:
10.5220/0007769700130022

Regulation (EU) 2016/679 of the European Parliament and
of the Council of 27 April 2016 on the protection of
natural persons with regard to the processing of
personal data and on the free movement of such data,

and repealing Directive 95/46/EC (General Data
Protection Regulation) (Text with EEA relevance); OJ
L 119, 4.5.2016, p. 1–88;

Gartner, 2011. Gartner Says Solving ‘Big Data’ Challenge
Involves More Than Just Managing Volumes of Data,
http://www.gartner.com/newsroom/id/1731916
Published June 27, 2011 Accessed May 2, 2016

Graylog, 2019. Industry Leading Log Management |
Graylog https://graylog.org Accessed September 12,
2019

IBM, 2019. IBM QRadar SIEM – Overview,
https://www.ibm.com/us-en/marketplace/ibm-qradar-
siem Accessed September 12, 2019

Jurafsky, D., Martin, J. J., 2009. Speech and language
processing. An introduction to natural language
processing, computational linguistics and speech
recognition. 2nd edition, Upper Saddle River, N.J.,
London: Pearson Prentice Hall (Prentice Hall series in
aritificial intelligence), pp 761 ff.

Kent, K., Souppaya, M., 2006. Guide to Computer
Security Log Management, Recommendations of the
National Institute of Standards and Technology
(NIST), DOI: 10.6028/NIST.SP.800-92

Logentries, 2019. Logentries: Log Management &
Analysis Software Made Easy. https://logentries.com
Accessed September 12, 2019

Loggly, 2019. Log Analysis | Log Management by Loggly
https://loggly.com Accessed September 12, 2019

Singh, D., Reddy, C.K., 2014. A survey on platforms for
big data analytics, Journal of Big Data. DOI:
10.1186/s40537-014-0008-6

Splunk, 2019. SIEM, AIOps, Application Management,
Log Management, Machine Learning, and
Compliance. https://splunk.com Accessed September
12, 2019

Sumo Logic, 2019. Log Management & Security Analysis,
Continuous Intelligence, Sumo Logic.
https://sumologic.com Accessed September 12, 2019

Swift, D., 2010. Successful SIEM and Log Management
Strategies for Audit and Compliance, White Paper
SANS Institute, https://www.sans.org/reading-
room/whitepapers/auditing/paper/33528
Accessed September 5, 2019

Swoboda, T., Kaufmann, M., Hemmje, M. L., Toward
Cloud-based Classification and Annotation Support,
Proceedings of the 6th International Conference on
Cloud Computing and Services Science (CLOSER
2016) – Volume 2, pp. 131-237, 2016

Teixeira, A., 2017. Get over SIEM event normalization.
https://medium.com/@ateixei/get-over-siem-event-
normalization-595fc36559b4 Accessed September 16,
2019

Varanadi, R., 2003. A Data Clustering Algorithm for
Mining Patterns From Event Logs. In: Proceedings of
the 2003 IEEE Workshop on IP Operations and
Management, ISBN: 0-7803-8199-8

Williams, A. T., Nicolett, M., 2005. Improve IT Security
With Vulnerability Management, Gartner Research ID
G00127481

